Many of the features of an article from a scholarly journal or a popular journal can be identified in the database record itself without ever looking at the article.

Record for a scholarly article:

- Article title describes content. No catchy or attention-grabbing headlines.
- Journal title sounds academic; often contains words like "bulletin," "journal" or "review."
- Articles are longer in length.
- Article will often feature charts, graphs or maps showing research results.
- Database describes journal as academic.

Record for a popular article:

- Article title is designed to capture audience interest.
- Magazine title is designed to appeal to a large readership.
- Magazine articles are shorter in length.
- Database identifies publication as a "periodical" or "magazine" rather than "academic journal."
- Magazine articles often contain photos or other eye-catching graphics.
Scholarly Journal? Popular Magazine? Sometimes you CAN judge a book by its cover, or in this case, an article by its format! The following format clues will help you identify scholarly and non-scholarly content.

Scholarly:

Genetically Modified Crops and Food Security

Martin Qaim *, Shahzad Kousar **
1 Department of Agrarian Economics and Rural Development, Georg-August University of Göttingen, Göttingen, Germany, Institute of Agricultural and Resource Economics, University of Agriculture, Faisalabad, Pakistan

Abstract
The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Small-scale farmers constitute a large proportion of the underdeveloped world's population. Our study focuses on the latter aspect and provides the first ever joint analysis of food security impacts of GM crops at the micro-level. We use comprehensive panel data collected over several years from farm households in Asia, where transgenic GM crops have been widely adopted. Controlling for factors, such as the adoption of GM crops has significantly increased caloric consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among dairy producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

Introduction
Food security exists when all people have physical and economic access to sufficient, safe, and nutritious food. Unfortunately, food security does not refer to significant proportions of the world population. Around 900 million people are undernourished, meaning that they are inadequately supplied with calories [1]. More than 200 million people suffer from specific nutritional deficiencies, related to insufficient intake of micronutrients. Eradicating hunger is a central part of the United Nations Millennium Development Goals [2]. The key to achieving this goal is improved food productivity. Genetically modified (GM) crops are sometimes mentioned in this context. Some see the development and use of GM crops as a hunger solution [3,4], while others consider this technology risky to food security [5]. Solid empirical evidence is required to either confirm or refute this view.

There are three possible pathways how GM crops could impact food security. First, GM crops could contribute to food production increases. Thus, the supply of food is expected to increase both at global and local levels. Second, GM crops could affect food safety and food quality [6] but most of these effects were not found primarily when direct food use. While agricultural commodities prices would decline, the productivity gains from GM technology would have implications for food availability. In recent years, the adoption of GM crops has increased significantly, leading to higher food production and improved food security [7]. On the other hand, GM technology can help to breed food crops with higher levels of micronutrients, a case in point is Golden Rice with pro-vitamin A to the grain [8]. Such GM crops have also been commercialized. Projections show that they could reduce vitamin A deficiency among the poor, resulting in positive health effects [9,10].

The third pathway relates to GM crops use by smallholder farmers in developing countries. Most of the global GM crop area is located in developing countries, much of this area is large scale, and the use of GM crops is mostly limited to smallholder farmers in developing countries. Half of the global GM crop area is located in developing countries, much of this area is large scale, and the use of GM crops is mostly limited to smallholder farmers in developing countries.

Popular:

A Clever Title

Go non-GMO
Growing numbers of people are deciding to shun genetically modified foods. Here's why...

Eye-catching Graphics & Photos

Simple text with no citations or references

Author is a nutritionist; NOT a scholar.